Step 1-Select:

- I/O modules - available in a variety of densities and voltage options. Some modules have diagnostic features, individually isolated inputs/outputs or electronic protection.
- interface modules (IFMs) or prewired cables (optional)

Select SLC 500 I/0 Modules

Digital I/O modules, analog I/O modules, and specialty temperature, counting, process control, and BASIC language modules are available to help you create a custom solution for your application.

1746 Digital I/O modules
Digital I/O modules are available with $4,8,16$, or 32 channels and in a wide variety of I/O voltages (including AC, DC, and TTL). Combination modules with 2 inputs/2 outputs, 4 inputs/ 4 outputs, and 6 inputs $/ 6$ outputs are also available.

Terminals on the $4,8,12$, and 16 -channel modules have self-lifting pressure plates that accept two 14 AWG (2 mm 2) wires. LED indicators on the front of each module display the status of each I/O point.

32-channel I/O modules are equipped with a 40-pin, MIL-C-83503 type header and a removable wiring connector ($1746-\mathrm{N} 3$). The connector can be assembled with the wire type and length of your choice.

Output modules are available with solid-state AC, solid-state DC, and relay contact type outputs. High current solid-state output modules, catalog numbers 1746-OBP16, 1746OVP16, and 1746-OAP12, have fused commons with a blown fuse LED indication. The

Sourcing DC Output Modules

Specifications	1746-0B6EI	1746-0B8	1746-0B16	1746-0B16E	1746-0B32	1746-0B32E	1746-0BP8 ${ }^{(4)}$	1746-0BP16
Voltage drop, on-state output, max.	1.0V @ 2.0 A	$\begin{aligned} & 1.2 \mathrm{~V} @ \\ & 1.0 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 1.2 \mathrm{~V} @ \\ 0.5 \mathrm{~A} \end{array}$	1.0V @ 0.5 A	1.2V @ 0.5 A		1.0V @ 2.0 A	1.0V @ 1.0 A
Load current, min.	1 mA							
Leakage current, off-state output,max	1 mA							
Signal on delay, \max (resistive load)	$1.0 \mathrm{~ms}^{(2)}$	0.1 ms	0.1 ms	$1.0 \mathrm{~ms}^{(3)}$	0.1 ms	1.0 ms	$1.0 \mathrm{~ms}^{(3)}$	$0.1 \mathrm{~ms}^{(3)}$
Signal off delay, \max (resistive load)	2.0 ms	1.0 ms	1.0 ms	1.0 ms	1.0 ms	2.0 ms	2.0 ms	1.0 ms
Continuous current per module	$\begin{aligned} & 12.0 \mathrm{~A} @ 0 \ldots 60^{\circ} \mathrm{C} \\ & \left(32^{\circ} \ldots 140^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 8.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 4.0 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$		8.0 A @ 0...60 ${ }^{\circ} \mathrm{C}\left(32 \ldots 140^{\circ} \mathrm{F}\right)$				$\begin{aligned} & \hline 6.4 \mathrm{~A} @ \\ & 0 \ldots 60^{\circ} \mathrm{C} \\ & \left(32 \ldots 140^{\circ} \mathrm{F}\right) \end{aligned}$
Continuous current per point	$\begin{array}{\|l\|} \hline 2.0 \mathrm{~A} @ 0 \ldots 60^{\circ} \mathrm{C} \\ \left(32^{\circ} \ldots 140^{\circ} \mathrm{F}\right)^{(3)} \end{array}$	$\begin{aligned} & 1.0 \mathrm{~A} @ 30 \\ & { }^{\circ} \mathrm{C}\left(86{ }^{\circ} \mathrm{F}\right) \\ & 0.50 \mathrm{~A} @ 60 \\ & { }^{\circ} \mathrm{C} \\ & \left(140^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 0.50 \mathrm{~A} @ 30 \\ & { }^{\circ} \mathrm{C}\left(86{ }^{\circ} \mathrm{F}\right) \\ & 0.25 \mathrm{~A} @ \\ & 60^{\circ} \mathrm{C} \\ & \left(140^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 1.0 \mathrm{~A} @ 30 \\ & { }^{\circ} \mathrm{C}\left(86{ }^{\circ} \mathrm{F}\right) \\ & 0.50 \mathrm{~A} @ 60 \\ & { }^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)^{(4)} \end{aligned}$	$\begin{aligned} & 0.50 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 0.25 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$		$\begin{aligned} & 2.0 \mathrm{~A} @ 0 \ldots 60 \\ & { }^{\circ} \mathrm{C}(32 \ldots 140 \\ & \left.\left.{ }^{\circ} \mathrm{F}\right)\right)^{(4)} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~A} @ 30^{\circ} \mathrm{C} \\ & \left(86^{\circ} \mathrm{F}\right) \\ & 1.0 \mathrm{~A} @ 60^{\circ} \mathrm{C} \\ & \left(140^{\circ} \mathrm{F}\right)^{(4)} \end{aligned}$
Surge current per point for $10 \mathrm{~ms}^{(1)}$	4.0 A	3.0 A		2.0 A	$\begin{aligned} & 1.0 \mathrm{~A} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right) \\ & 1.0 \mathrm{~A} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right) \end{aligned}$		4.0 A	

(1) Repeatability is once every $1 \mathrm{~s} @ 30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$. Repeatability is once every $2 \mathrm{~s} @ 60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.
(2) Fast turn-off modules provide fast OFF delay for inductive loads. Comparative OFF delay times for 1746-0B8, 1746-OV8 and fast turn-off modules, when switching Bulletin 100-B110 (24 W sealed) contractor, are: 1746-OB8 and 1746-OV8 modules OFF delay = 152 ms ; fast turn-off modules OFF delay $=47 \mathrm{~ms}$.
(3) Fast off-delay for inductive loads is accomplished with surge suppressors on the 1746-IB6EI, 1746-0BP8 series B and later, 1746-OB16E series B and later, 1746-0BP16, and 1746-OVP16 modules. A suppressor at the load is not needed unless another contact is connected in series. If this is the case, a 1 N4004 diode should be reverse-wired across the load. This defeats the fast turn-off feature.
(4) An external fuse can be used to protect this module from short circuits. Recommended fuse is SANO MO 4-3.15 A, $5 \times 20 \mathrm{~mm}$.
(5) The 1746-OBP16 module features a fused common and blown fuse LED indicator.

AC Input Modules

Specifications	1746-IA4	1746-IA8	1746-IA16	1746-IM4	1746-IM8	1746-IM16	1746-IN16
Number of inputs	4	8	16	4	8	16	16
Points per common	5	8	16	4	8	16	16
Voltage category	100/120V			200/240V A			24V AC/DC
Operating voltage range	85...132V 63 Hz		170...265V	(47... 63 Hz		$\begin{aligned} & 10 \ldots 30 \mathrm{~V} \mathrm{AC} \\ & 10 \ldots 30 \mathrm{~V} D \end{aligned}$
Backplane current (mA) @ 5V	35 mA	50 mA	85 mA	35 mA	50 mA	85 mA	85 mA
Backplane current (mA) @ 24V	0 mA						
Voltage, off-state input, max	30V AC			50V AC			$\begin{aligned} & 3.0 \mathrm{VDC} \\ & 3.0 \mathrm{~V} \mathrm{AC} \end{aligned}$

Relay Master and Expander 20-Terminal XIMs

Description	Cat. No.	I/O Module Catalog Number 1746-																		
		$\begin{array}{\|l\|} \hline \text { IA } \\ 16 \end{array}$	$\begin{array}{\|l\|} \hline \text { IB } \\ 16 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { IC } \\ & \text { 16 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { IG } \\ 16 \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { IH } \\ 16 \end{array}$	$\begin{array}{\|l\|} \hline \text { IM } \\ 16 \end{array}$	$\begin{array}{\|l\|} \hline \text { IN } \\ \text { 16 } \end{array}$	$\begin{array}{\|l\|} \hline \text { ITB } \\ \hline 16 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ITV } \\ & 16 \end{aligned}$	$\begin{array}{\|l} \hline \text { IV } \\ 16 \end{array}$	$\begin{array}{\|l\|} \hline 0 A \\ 16 \end{array}$	$\begin{array}{\|l\|} \hline \text { OB } \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 B \\ 16 E \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { OBP } \\ \hline 16 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { OG } \\ 16 \end{array}$	$\begin{aligned} & \hline \text { OV } \\ & 16 \end{aligned}$	$\begin{aligned} & \hline \text { OVP } \\ & 16 \end{aligned}$	$\begin{aligned} & \hline \text { OW } \\ & 16 \end{aligned}$	OX8
Expander with eight (8) 24 V DC relays	$\begin{aligned} & \hline \text { 1492-XI } \\ & \text { M24-8R } \end{aligned}$	-	-	-	-	-	-	-	-	-	-	-	(1)	(1)	(1)	-	-	-	-	-
Expander with eight (8) 120 V AC relays	$\begin{array}{\|l\|} \hline \text { 1492-XI } \\ \text { M120-8 } \\ \text { R } \end{array}$	-	-	-	-	-	-	-	-	-	-	(1)	-	-	-	-	-	-	-	-

Fusible Expander

8-channel expander with 24V DC blown fuse indicators	1492-XI MF-F24- 2	-	-	-	-	-	-	-	-	-	-	-	(1)	(1)	(1)	-	-	-	-	-
8-channel expander with 120V AC blown fuse indicators	1492-XI MF-F120 -2	-	-	-	-	-	-	-	-	-	-	(1)	-	-	-	-	-	-	-	-

Feed-through Expander

(1) One expander is connected to a master to provide a total of 16 outputs. An extender cable is included with each expander to attach it to the master.

40-Terminal IFMs and XIMs for 1746 Digital 32-Point I/O Modules

Feed-through 40-Terminal IFMs

Description	Catalog Number	I/O Module Catalog Number 1746-				
		IB32	IV32	OB32	OB32E	OV32
Standard 132V AC/DC max	1492-IFM40F	H	H	H	H	H
Extra terminals (2 per I/0) 132V AC/DC max	1492-IFM40F-2	H	H	H	H	H
3 -wire sensor type input devices 60V AC/DC max	1492-IFM40F-3	H	H	-	-	-

LED Indicating 40-Terminal IFMs

Description	Catalog Number	I/O Module Catalog Number 1746-				
		IB32	IV32	OB32	OB32E	OV32
Standard with 24V AC/DC LEDs	1492-IFM40D24	H	H	H	H	H
24 V AC/DC LEDs and extra terminals for outputs	1492-IFM40D24-2	-	-	H	H	H
24 V AC/DC LEDs and extra terminals for inputs	1492-IFM40D24A-2	H	H	-	-	-
120V AC LEDs and extra terminals for outputs	1492-IFM40D120-2	-	-	-	-	-
120V AC LEDs and extra terminals for inputs	1492-IFM40D120A-2	-	-	-	-	-

LED Indicating 40-Terminal IFMs

Description	Catalog Number	I/O Module Catalog Number 1746-				
		IB32	IV32	OB32	OB32E	OV32
3-wire sensor with 24V AC/DC LEDs	1492-IFM40D24-3	H	H	-	-	-
16 Individually isolated with 24/48V AC/DC LEDs and four terminals/output	1492-IFM40DS24-4	-	-	-	-	-
16 Individually isolated with 24V AC/DC LEDs and four terminals/input	1492-IFM40DS24A-4	-	-	-	-	-
16 Individually isolated with 120V AC LEDs and four terminals/output	1492-IFM40DS120-4	-	-	-	-	-
16 Individually isolated with 120V AC LEDs and four terminals/input	1492-IFM40DS120A-4	-	-	-	-	-
16 Individually isolated with 240V AC LEDs and four terminals/input	1492-IFM40DS240A-4	-	-	-	-	-

Fusible 40-Terminal IFMs

Description	Catalog Number	I/O Module Catalog Number 1746-				
		IB32	IV32	OB32	OB32E	OV32
120V AC/DC with extra terminals for outputs	1492-IFM40F-F-2	-	-	H	H	H
Extra terminals with 24V AC/DC blown fuse indicators for outputs	1492-IFM40F-F24-2	-	-	H	H	H
Extra terminals with 120V AC/DC blown fuse indicators for outputs	1492-IFM40F-F120-2	-	-	-	-	-
16 Individually isolated with extra terminals for 120 V AC/DC outputs	1492-IFM40F-FS-2	-	-	-	-	-
16 individually isolated with extra terminals and 24 V AC/DC blown fuse indicators	1492-IFM40F-FS24-2	-	-	-	-	-
16 Individually isolated with 24V AC/DC blown fuse indicators and four terminals/output	1492-IFM40F-FS24-4	-	-	-	-	-
16 Individually isolated with extra terminals and 120 V AC/DC blown fuse LED indicators	1492-IFM40F-FS120-2	-	-	-	-	-
16 Individually isolated with 120 V AC/DC blown fuse indicators and four terminals/output	1492-IFM40F-FS120-4	-	-	-	-	-
16 Individually isolated with 240V AC/DC blown fuse indicators and four terminals/output	1492-IFM40F-FS240-4	-	-	-	-	-
16 Individually isolated with 24V AC/DC blown fuse indicators and four terminals/input	1492-IFM40F-FS24A-4	-	-	-	-	-
16 Individually isolated with 120 V AC/DC blown fuse indicators and four terminals/input	1492-IFM40F-FS120A-4	-	-	-	-	-

Power Supply Worksheet Example

Procedure

1. For each slot of the chassis that contains a module, list the slot number, catalog number of module, and its 5 V and 24 V maximum currents. Also include the power consumption of any peripheral devices that may be connected to the processor other than a DTAM, HHT, or PIC - the power consumption of these devices is accounted for in the power consumption of the processor.

Chassis Number 1		Maximum Currents		Chassis Number 2		Maximum Currents	
Slot Number	Cat. No.	5 V dc	24 Vdc	Slot Number	Cat. No.	5 V dc	24 V dc
0	1747-L511	0.350 A	0.105 A	0	1747-L514	0.350 A	0.105 A
1	1746-IV8	0.050 A	-	1	1746-0W16	0.170 A	0.180 A
2	1746-0B8	0.135 A	-	2	1746-N041	0.055 A	0.195 A
3	1746-0A16	0.370 A	-	3	1746-N041	0.055 A	0.195 A
				4	1746-N041	0.055 A	0.195 A
				5	1746-N041	0.055 A	0.195 A
				6	1746-I012	0.090 A	0.070 A
Peripheral Device	1747-AIC		0.085 A	Peripheral Device	1747-AIC		0.085 A
Peripheral Device				Peripheral Device			
2. Add loading currents of all system devices at 5 and 24 V dc to determine Total Current.		0.905 A	0.190 A	2. Add loading currents of all system devices at 5 and 24 V dc to determine Total Current.		0.830 A	1.220 A
3. For 1746-P4 power supplies, calculate total power consumption of all system devices. If not using a 1746-P4, go to step 4.							
Current		Multiply By	=Watts	Current		Multiply by	= Watts
Total Current at 5 V dc	0.905 A	5 V	4.525 W	Total Current at 5V dc	0.830 A	5 V	4.15 W
Total Current at 24 V dc	0.190 A	24 V	4.56 W	Total Current at 24 V dc	1.220 A	24V	29.28 W
User Current at 24 V dc	0.500 A	24 V	12.00 W	User Current at 24 V dc	0.500 A	24V	12.00 W
Add the Watts values to determine Total Power (cannot exceed 70 W)			21.085 W	Add the Watts values to determine Total Power (cannot exceed 70 W)			45.43 W

4. Choose the power supply from the list of catalog numbers below. Compare the Total Current required for the chassis with the Internal Current capacity of the power supplies. Be sure the Total Current consumption for the chassis is less than the Internal Current Capacity for the power supply, for both 5 V and 24 V loads.

Catalog Number		Internal Current Capacity		Catalog Number		Internal Current Capacity	
		5 V dc	24 Vdc			5 V dc	24 V dc
1746-P1		2.0 A	0.46 A	1746-P1		2.0 A	0.46 A
1746-P2		5.0 A	0.96 A	1746-P2		5.0 A	0.96 A
1746-P3		3.6 A	0.87 A	1746-P3		3.6 A	0.87 A
1746-P4 (S		10.0 A	2.88 A	1746-P4 (see step 3)		10.0 A	2.88 A
1746-P5		5.0 A	0.96 A	1746-P5		5.0 A	0.96 A
1746-P6		5.0 A	0.96 A	1746-P6		5.0 A	0.96 A
1747-P7*	12 V input	2.0 A	0.46 A	1747-P7*	12V Input	2.0 A	0.46 A
	24 V input	3.6 A	0.87 A		24V Input	3.6 A	0.87 A
Required Power Supply		1746-P1		Required Power Supply		1746-P4	

*See P7 current capacity chart on page 69.

