

Filter elements

RE 51420

Edition: 2014-05 Replaces: 10.10

Type 1. and 2. Elements

- Sizes according to **DIN 24550**: 0040 to 1000additional sizes: 0004 to 2500
- ▶ Differential pressure resistance up to 330 bar [to 4786 psi]
- Filter rating: 1 to 800 μm
- ► Filter area: up to 4.8 m² [to 7440 in²]
- ► Operating temperature: -10 °C to +100 °C [+14 °F to +212 °F]

Features

HAD8040_14

- ► Filter media for numerous application ranges made of glass fiber material, filter paper, wire mesh, fleece material and metal fiber fleece
- ► Cleanable wire mesh filter media
- ► Attainable oil cleanliness up to ISO 12/8/3 (ISO 4406)
- ▶ High dirt holding capacity and filtration performance due to multi-layer glass fiber technology and simultaneously a low initial pressure differential (ISO 3968)
- Extended product range for non-mineral oil based fluids
- ► Filter elements with high pressure differential stability

Contents

Features	1
Ordering code filter elements	2
Preferred types	8
Assignment of filter elements to filter series	S
Function, section	10
Filter variables	11
Technical data preferred program	13
Compatibility with permitted hydraulic fluids	14
Filter media	15
Assembly, commissioning, maintenance	24
Directives and standards	24

Filter element type 1.

01	02	03		04	05	06		07		- 08
1.			l –				-	0	-	i

Filter	element	1)
01	Design	

ize		
02	According to DIN 24550	0040
		0063
		0100
		0160
		0250
		0400
		0630
		1000
	According to Bosch Rexroth	0045
	standard	0055
		0120
		0130
		0150

1.

Filter rating in µm

3 Nominal	Stainless steel wire mesh, cleanable	G10
		G25
		G40
		G60
		G100
		G200
		G500
		G800
	Filter paper, one-way (not cleanable)	P10
		P25
	Non-woven fabric, one-way (not cleanable)	VS25
		VS40
		VS60
Absolute (ISO 1688	9) Glass fiber material, one-way (not cleanable)	H1XL
		H3XL
		H6XL
		H10XL
		H20XL
	Metal fiber fleece, one-way (not cleanable)	M5
		M10
Water absorbing 2)	One-way (not cleanable)	AS3
		AS6
		AS10
		AS20

Pressure differential

04	Maximum admissible pressure differential of the filter element: 30 bar [435 psi]	Α	
	Maximum admissible pressure differential of the filter element: 160 bar [2321 psi]	С	

Filter element type 1.

01	02	03		04	05	06		07		80
1.			-				_	0	_	

Element design

05	Adhesive	Standard adhesive	0
		Special adhesive ³⁾	Н

Element design

06	Material	Standard material	0
		Stainless steel 1,4571 ⁴⁾	V

Bypass valve

07 without bypass valve

Seal

08	NBR seal	М
	FKM seal	V

- 1) Permissible temperature range see chapter "Technical data"
- 2) Only configurable with differential pressure A = 30 bar [435 psi]
- 3) Improved temperature and media resistance, only in conjunction with seal FKM "V"
- $^{\rm 4)}$ Only in conjunction with special adhesive "H" and seal FKM "V"

Order example:

1.0040 H10XL-A00-0-M

Material no.: R928005837

Other filter ratings and seal material upon request.

Filter element type 2.

01	02	03		04	05	06		07		80
2.			-				-	0	-	

Filter	element	1)
01	Design	

Size		
02	According to DIN 24550	0040
		0063
		0100
		0160
		0250
		0400
		0630
		1000
	According to Bosch Rexroth	0004 2)
	standard	0130
		0150

Filter rating in µm

Nominal	Stainless steel wire mesh, cleanable	G10
Nominal	Stanness steel wife mesh, cleanable	G25
		G40
		G60
		G100
		G200
		G500
		G800
	Filter paper, one-way (not cleanable)	P10
		P25
	Non-woven fabric, one-way (not cleanable)	VS25
		VS40
		VS60
Absolute (ISO 16889)	Glass fiber material, one-way (not cleanable)	H1XL
		H3XL
		H6XL
		H10XL
		H20XL
	Metal fiber fleece, one-way (not cleanable)	M5
		M10
Water absorbing 3)	One-way (not cleanable)	AS3
		AS6
		AS10
		AS20

Pressure differential

04	Maximum admissible pressure differential of the filter element: 30 bar [435 psi]	Α
	Maximum admissible pressure differential of the filter element: 330 bar [4786 psi]	В

Filter element type 2.

01	02	03		04	05	06		07		80
2.			-				_	0	-	

Element design

	· ·		
05	Adhesive	Standard adhesive	0
		Special adhesive 4)	Н

Element design

06	Material	Standard material	0
		Stainless steel 1.4571 ⁵⁾	V

Bypass valve

Seal 2)

08	NBR seal	М
	FKM seal	V

- 1) Permissible temperature range see chapter "Technical data"
- 2) Filter size 0003 = Filter element-size 0004
- 3) Only configurable with differential pressure A = 30 bar [435 psi]
- 4) Improved temperature and media resistance, only in conjunction with seal FKM "V"
- 5) Only in conjunction with special adhesive "H" and seal FKM "V"

Order example: 2,0040 H10XL-A00-0-M

Material no.: R928006647

Other filter ratings and seal material upon request.

Filter element type 2.Z

for sandwich plate filter 320PZR

01	02	03		04	05		06
2.Z			-	B00	0	-	

Filter element 1

Filte	r element 1)	
01	Design	2.Z
Size		
02	According to Bosch Rexroth	025
	standard	075
		125
Filte	r rating in µm	
03	Absolute (ISO 16889) Glass fiber material, one-way (not cleanable)	H3PZ
		H6PZ
		H10PZ
		H20PZ
Pres	sure differential	
04	Maximum admissible pressure differential of the filter element: 330 bar [4786 psi]	B00
Вура	ss valve	
05	without bypass valve	0
Seal	1)	
06	NBR seal	М
	FKM seal	V

¹⁾ Permissible temperature range see chapter "Technical data"

Order example:

2.Z125 H10PZ-B00-0-M

Material no.: R928051781

Filter element Type 2.0058 and 2.0059 for inline filter 16 FE and duplex filter 16 FD

01	02	03		04		05		06
2.			-	A00	-		-	

01	Design		2.		
Size					
02	According to Bosch Rexr	oth	0058		
	standard		0059		
ilte	r rating in µm				
03	Nominal	Stainless steel wire mesh, cleanable	G10		
			G25		
			G40		
			G60		
			G100		
			G200		
			G500		
			G800		
		Filter paper, one-way (not cleanable)	P10		
			P25		
		Non-woven fabric, one-way (not cleanable)	VS25		
			VS40		
			VS60		
	Absolute (ISO 16889)	Glass fiber material, one-way (not cleanable)	H1XL		
			H3XL		
			H6XL		
			H10XL		
			H20XL		
		Metal fiber fleece, one-way (not cleanable)	M5		
			M10		
	Water absorbing	One-way (not cleanable)	AS3		
			AS6		
			AS10		
			AS20		
Pres	sure differential				
04	Maximum admissible pre	ssure differential of the filter element: 30 bar [435 psi]	A00		
Вура	ss valve				
05	without bypass valve		0		
	With bypass valve – release pressure 3 bar [43.5 psi]				
Seal					
06	NBR seal		M		
	FKM seal		V		
			•		

¹⁾ Permissible temperature range see chapter "Technical data"

Order example: 2,0058 H10XL-A00-6-M

Material no. R928007115

Other filter ratings and seal material upon request.

Preferred types

Filter element Type 1. preferred types, NBR seal

Туре	Material no. Filter element, Filter rating in μm						
	H3XL	H6XL	H10XL				
1.0040 HXL-A00-0-M	R928005835	R928005836	R928005837				
1.0063 HXL-A00-0-M	R928005853	R928005854	R928005855				
1.0100 HXL-A00-0-M	R928005871	R928005872	R928005873				
1.0130 HXL-A00-0-M	R928037178	R928045104	R928037180				
1.0150 HXL-A00-0-M	R928037181	R928037182	R928037183				
1.0160 HXL-A00-0-M	R928005889	R928005890	R928005891				
1.0250 HXL-A00-0-M	R928005925	R928005926	R928005927				
1.0400 HXL-A00-0-M	R928005961	R928005962	R928005963				
1.0630 HXL-A00-0-M	R928005997	R928005998	R928005999				
1.1000 HXL-A00-0-M	R928006033	R928006034	R928006035				
1.2000 HXL-A00-0-M	R928041312	R928048158	R928040797				
1.2500 HXL-A00-0-M	R928041314	R928046806	R928040800				

Filter element Type 2. preferred types, NBR seal

Туре	Material no. Filter element, Filter rating in μm				
	H3XL	H6XL	H10XL		
2.0040 HXL-A00-0-M	R928006645	R928006646	R928006647		
2.0063 HXL-A00-0-M	R928006699	R928006700	R928006701		
2.0100 HXL-A00-0-M	R928006753	R928006754	R928006755		
2.0130 HXL-A00-0-M	R928022274	R928022275	R928022276		
2.0150 HXL-A00-0-M	R928022283	R928022284	R928022285		
2.0160 HXL-A00-0-M	R928006807	R928006808	R928006809		
2.0250 HXL-A00-0-M	R928006861	R928006862	R928006863		
2.0400 HXL-A00-0-M	R928006915	R928006916	R928006917		
2.0630 HXL-A00-0-M	R928006969	R928006970	R928006971		
2.1000 HXL-A00-0-M	R928007023	R928007024	R928007025		

Filter element Type 2.Z preferred types, NBR seal

Туре	Material no. Filter element, Filter rating in μm						
	нзрг	H6PZ	H10PZ				
2.Z025 HPZ-B00-0-M	R928051771	R928053299	R928051773				
2.Z075 HPZ-B00-0-M	R928051775	R928051776	R928051777				
2.Z125 HPZ-B00-0-M	R928051779	R928051780	R928051781				

Filter element Type 20058 and 2.0059 preferred types, NBR seal

Туре	Material no. Filter element, Filter rating in μm						
	H3XL	H6XL	H10XL				
2.0058 HXL-A00-6-M	R928007113	R928007114	R928007115				
2.0059 HXL-A00-6-M	R928007131	R928007132	R928007133				

Assignment of filter elements to filter series

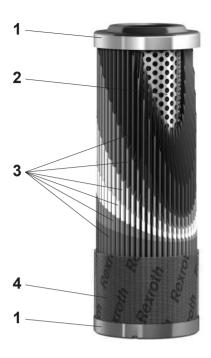
Element type (Type)	Series	Application	Data sheet no. 1)	
	40FLE(N)	Inline filters	51401	
	100FLE(N)	mille mers	51402	
	40FLD(N)		51408	
	100FLD(N)	Duplex filter	51409	
1.	40FLDK(N)	Duplex lifter	51407	
1.	63FLDK(N) -1X		51445	
	10TE(N)	Tank mounted return line filters	51424	
	10FRE(N)	rank mounted return line litters	51425	
	10TD(N)-1X	T	51454	
	10 FRD(N)	Tank mounted return line filters, switchable	not available	
Element type (Type)	Series	Application	Data sheet no. 1	
	40LE(N)		51400	
	100LE(N)		51400	
	50LE(N)		51447	
	110LE(N)	Inline filters	51448	
	245LE(N)	inline filters	51421	
	350LE(N)		51422	
	445LEN		51423	
	16FE		51403	
•	40LD(N)		51406	
2.	160LD(N)		51406	
	50LD(N)	D 1 (1)	51453	
	150LD(N)	Duplex filter	51446	
	400LD(N)		51429	
	16FD		51410	
	250/450FE(N)		51405	
	245PSF(N)	DI I CH	51418	
	350PSF(N)	Block mounting filters	51419	
	450PBF(N)		51417	
	,		•	
Element type (Type)	Series	Application	Data sheet no. ¹	
2.Z	320PZR	Sandwich plate filter 514		
2.2	320PZR/PZL-2X	Sandwich plate filter, Generation 2X	51468	

¹⁾ For further information please refer to the respective data sheet

Function, section

The filter element is the central component of industrial filters. The actual filtration process takes part in the filter element. The main filter variables, such as size range of particle retention, dirt holding capacity and pressure loss are determined by the filter elements and the filter media used to construct them, Rexroth filter elements are used for filtration of hydraulic fluids in the hydraulic system as well as for the filtration of lubricants, industrial fluids and gases.

Filter elements consist of a combination of radially pleated filter media (3) which are laid around a perforated supporting tube (2). The filter element is vertically sealed with a two-component adhesive and the supporting tube and filter mat are connected to both end plates (1). One or two seal rings are provided between the filter element and the filter housing as a sealing.


Series 2.0058 and 2.0059 can be selected optionally with a bypass valve at the base of the filter element. The flow is generally from outside to inside.

All filter elements of the Rexroth preferred program are made of zinc-free components thus preventing the formation of zinc-soap, in particular if water-containing fluids (HFA/HFC) and synthetic oils are used.

The use of zinc-free filter elements prevents early "element blocking", thus considerably increasing the life cycle of the elements.

Therefore, Rexroth filter elements can be used universally for typical hydraulic fluids and lubricants.

Moreover, many manufacturers of construction and agricultural machinery stipulate the use of zinc-free machine elements for rapidly bio-degradable hydraulic oils.

Filter variables

Filter rating and attainable oil cleanliness

The main goal when using industrial filters is not only the direct protection of machine components but to attain the required oil cleanliness. Oil cleanliness is defined on the

basis of oil cleanliness classes which classify how the amount of particles of the existing contamination is distributed in the operating liquid.

Filtration performance

Filtration ratio $\beta_{x(c)}$ (β value)

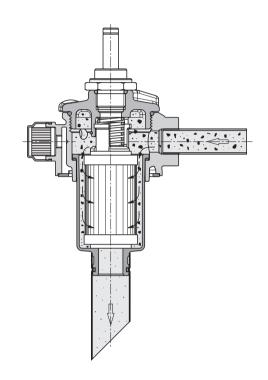
The retention capacity of hydraulic filters against pollution in a hydraulic system is characterized by the filtration ratio $\beta_{x(c)}.$ This ratio represents the major performance feature of hydraulic filters. It is measured in the multipass test, and is the average value of the specified initial and final pressure differential according to ISO 16889 using ISOMTD test dust.

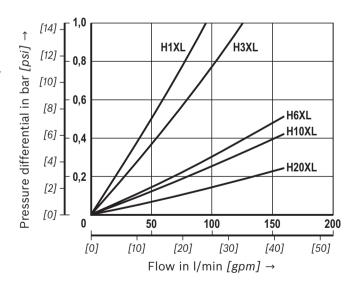
The filtration quotient $\beta_{x(c)}$ is defined as the quotient of the particle count of the respective particle size on both sides of the filter.

Dirt holding capacity

It is also measured using the multipass test and determines the amount of test dust ISOMTD which is fed to the filter medium until a specified pressure differential increase has been reached.

Pressure loss (also pressure differential or delta p)


The pressure loss of the filter element is the relevant characteristic value for the determination of the filter size. These are the recommended values of the filter manufacture or specifications of the filter user. This value is dependent on many factors. These include for example: the rating of the filter media, its geometry and arrangement in the filter element, the filter area, the operating viscosity of the fluid and the flow.


The term "delta p" is often also expressed with the symbol: " Δp "

When dimensioning the complete filter with a filter element, an initial pressure loss is determined which must not be exceeded by the new filter element based on the aforementioned conditions.

The dimensioning of a Rexroth filter element and the complete filter by means of initial – Δp or – pressure loss can easily be carried out via our online program "BOSCH REXROTH FILTERSELECT".

The following diagram shows the typical pressure loss behavior of filter elements with different filter media at different flow rates.

Filter variables

Overview

For the separation of particles different filter media in various ratings are used according to application and requirement.

Filter medium/set-up	electron microscope image
HXL, Glass fiber material Depth filter, combination of inorganic micro glass filter medium High dirt holding capacity due to multi-layer technology.	
HPZ, Glass fiber material Depth filter, combination of inorganic micro glass filter medium. Single-layer set-in variant by HXL for use in sandwich plate filters.	
G, Stainless steel wire mesh Material 1.4401 and 1.4571 Surface filter made of stainless steel wire mesh with supporting tissue.	
P, Filter paper Inexpensive depth filter made of filter paper with supporting tissue. Made of specially impregnated cellulose fiber preventing humidity and swelling.	
M, Metal fiber fleece Material 1.4404 Depth filter made of stainless steel fibers with supporting mesh.	
VS, Fleece material Surface filter made of extremely solid fiber composite materials in the form of polyethylene-coated polypropylene fibers.	
AS, water absorbing Depth filter, fleece material with water absorbing material, combined with micro glass filter media.	

Technical data preferred program

(For applications outside these parameters, please consult us!)

Size kg	1.0040	1.0063	4.0400		1		
kø		1.0003	1.0100	1.0130	1.0150	1.0160	
.,9	0.16	0.24	0.38	0.59	0.67	0.74	
[lbs]	[0.35]	[0.53]	[0.83]	[1.30]	[1.47]	[1.63]	
Size	1.0250	1.0400	1.0630	1.1000	1.2000	1.2500	
kg	1.075	1.48	2.42	3.44	4.8	9.14	
[lbs]	[2.36]	[3.26]	[5.33]	[7.58]	[10.58]	[20.15]	
Size	2.0040	2.006	3 2.0	100	2.0130	2.0150	
kg	0.1	0.175	5 0.	.28	0.29	0.32	
[lbs]	[0.22]	[0.38]	[0.	.61]	[0.66]	[0.7]	
Size	2.0160	2.025	0 2.0	400	2.0630	2.1000	
kg	0.5	0.75	1.	.14	1.5	2.58	
[lbs]	[1.1]	[1.65]	[2.	.51]	[3.31]	[5.68]	
Size	2.0058	2.005	9 2.7	:025	2.Z075	2.Z0125	
kg	3.4	3.8	0.	.09	0.16	0.3	
[lbs]	[7.7]	[8.5]	[0	0.2]	[0.35]	[0.66]	
	From the outside to the inside						
°C [°F]	-10 +65 [+14+149] (shortly down to −30 [-22])						
°C [°F]	-40 +65 [40 +149]; max. relative air humidity 65 %						
°C [°F]	-20 +65 <i>[</i> -						
bar [psi]	30 [435]		160	[2321]	330 [4786]		
	Polyan	nide	Tin-coa	Tin-coated steel		d aluminum	
	Tin-coated steel						
	NBR or FKM						
°C [°F]	[] -10 +100 [+14 +212]						
pS/m	300						
	Size kg [lbs] Size kg [lbs] Size kg [lbs] Size kg [lbs] °C [%] °C [%] bar [psi]	Size 1.0250 kg 1.075 [lbs] [2.36] Size 2.0040 kg 0.1 [lbs] [0.22] Size 2.0160 kg 0.5 [lbs] [1.1] Size 2.0058 kg 3.4 [lbs] [7.7] From the ou °C [°F] -10 +65 [°C [°F] -20 +65 [bar [psi] 30 [4. Polyan Tin-coated s NBR or FKM	Size 1.0250 1.0400 kg 1.075 1.48 [lbs] [2.36] [3.26] Size 2.0040 2.006 kg 0.1 0.175 [lbs] [0.22] [0.38] Size 2.0160 2.025 kg 0.5 0.75 [lbs] [1.1] [1.65] Size 2.0058 2.005 kg 3.4 3.8 [lbs] [7.7] [8.5] From the outside to the °C [°F] -10 +65 [+14+149] °C [°F] -40 +65 [40 +149] °C [°F] -20 +65 [4 +149]; bar [psi] 30 [435] Polyamide Tin-coated steel NBR or FKM	Size 1.0250 1.0400 1.0630 kg 1.075 1.48 2.42 [lbs] [2.36] [3.26] [5.33] Size 2.0040 2.0063 2.0 kg 0.1 0.175 0. [lbs] [0.22] [0.38] [0 Size 2.0160 2.0250 2.0 kg 0.5 0.75 1. [lbs] [1.1] [1.65] [2 Size 2.0058 2.0059 2.2 kg 3.4 3.8 0. [lbs] [7.7] [8.5] [6 From the outside to the inside °C [𝔭] -10 +65 [-40 +149]; max. relative °C [𝔭] -20 +65 [-40 +149]; max. relative oc [𝔭] -20 +65 [-4 +149]; max. relative polyamide Tin-coa Tin-coated steel NBR or FKM *C [𝔭] -10 +100 [+14 +212]	Size 1.0250 1.0400 1.0630 1.1000 kg 1.075 1.48 2.42 3.44 [lbs] [2.36] [3.26] [5.33] [7.58] Size 2.0040 2.0063 2.0100 kg 0.1 0.175 0.28 [lbs] [0.22] [0.38] [0.61] Size 2.0160 2.0250 2.0400 kg 0.5 0.75 1.14 [lbs] [1.1] [1.65] [2.51] Size 2.0058 2.0059 2.2025 kg 3.4 3.8 0.09 [lbs] [7.7] [8.5] [0.2] From the outside to the inside °C [°F] -10 +65 [-40 +149]; max. relative air hum °C [°F] -40 +65 [-40 +149]; max. relative air hum bar [psi] 30 [435] 160 [2321] Polyamide Tin-coated steel NBR or FKM *C [°F] -10 +100 [+14 +212]	Size 1.0250 1.0400 1.0630 1.1000 1.2000 kg 1.075 1.48 2.42 3.44 4.8 [lbs] [2.36] [3.26] [5.33] [7.58] [10.58] Size 2.0040 2.0063 2.0100 2.0130 kg 0.1 0.175 0.28 0.29 [lbs] [0.22] [0.38] [0.61] [0.66] Size 2.0160 2.0250 2.0400 2.0630 kg 0.5 0.75 1.14 1.5 [lbs] [1.1] [1.65] [2.51] [3.31] Size 2.0058 2.0059 2.2025 2.2075 kg 3.4 3.8 0.09 0.16 [lbs] [7.7] [8.5] [0.2] [0.35] From the outside to the inside °C [°F] -10 +65 [-40 +149]; max. relative air humidity 65 % °C [°F] -40 +65 [-40 +149]; max. relative air humidity 65 % bar [psi] 30 [435] 160 [2321] 330 Polyamide Tin-coated steel	

Material	Code letter	Operating temperature range °C [°F]
Seal	·	
NBR	M	-40 to +100 [-40 to +212]
FKM	V	-20 to +210 [-4 to +410]
Filter element adhesive		
Standard	0	-40 to +100 [-40 to +212]
Special	Н	-55 to +170 [-67 to +338]
Filter element material (cover, base, support tube	n)	
Standard	0	-40 to +100 [-40 to +212]
Stainless steel	V	-55 to +170 [-67 to +338]
Filter element material (Filter material)		
Aquasorb	AS	0 to +160 [32 to +320]
Stainless steel wire mesh	G	-55 to +500 [-67 to +932]
glass fiber material	HXL	to +160 [to +320]
Metal fiber fleece	M	-55 to +250 [-67 to +482]
Filter paper	P	to +130 [to +266]
Fleece material	VS	to +80 [to +176]

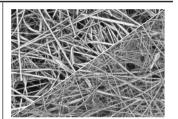
Compatibility with permitted hydraulic fluids

Hydraulic fluid		Classification	Suitable sealing materials	Standards	
Mineral oil		HLP	NBR	DIN 51524	
Biodegradable	– insoluble in water	HETG	NBR	VDMA 24568	
		HEES	FKM	VDIVIA 24500	
	- soluble in water	HEPG	FKM	VDMA 24568	
Flame-resistant	- water-free	HFDU, HFDR	FKM	VDMA 24317	
	– containing water	HFAS	NBR	DIN 24220	
		HFAE	NBR	DIN 24320	
		HFC	NBR	VDMA 24317	

Important information on hydraulic fluids:

- ► For more information and data on the use of other hydraulic fluids, please refer to data sheet 90220 or contact us!
- ► Flame-resistant containing water: due to possible chemical reactions with materials or surface coatings of machine and system components, the service life with these hydraulic fluids may be less than expected.
- Filter materials made of filter paper (cellulose) may not be used, filter elements with glass fiber material have to be used instead.
- ▶ **Biodegradable:** If filter materials made of filter paper are used, the filter life may be shorter than expected due to material incompatibility and swelling.

Technical data H...XL


Glass fiber fleece, H...XL

The filter medium achieves the best possible degree of purity compared to other filter media. It is suitable for fluids such as hydraulic oils, lubricants, chemical and industrial liquids. Due to its designed retention capacity (ISO 16889), it offers therefore highly effective protection for machine and system components which are sensitive to contamination.

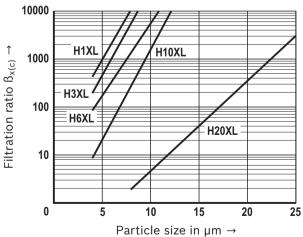
- H...XL depth filter made of inorganic glass fiber material
- Absolute filtration/defined retention capacity according to ISO 16889
- High dirt holding capacity due to multi-layer set-up
- Non-reusable filter (not cleanable due to the depth filtration effect)
- Attainable oil cleanliness classes according to ISO 4406 up to ISO code 12/8/3 and better

Filter rating and attainable oil cleanliness

The following table provides recommendations for the selection of a filter medium in dependency of the application and indicates the average oil cleanliness class attainable according to ISO 4406 or SAE-AS 4059.

glass fiber material

Contamination class	to be achieved with filter							
DIN ISO 4406	ß _{x(c)} = 200	Material	Possible arrangement	Hydraulic system		Hydraulic system		
10/6/4 - 14/8/6	1 µm	Special applicati				Special applications		
13/10/8 - 17/13/10	3 µm	Glass fiber	Pressure filter					Servo valves
15/12/10 - 19/14/11	6 µm	material						High-response valves
17/14/10 - 21/16/13	10 μm	HXL	Return flow or					Proportional valves
19/16/12 - 22/17/14	20 μm		pressure filters.					- General pumps and valves

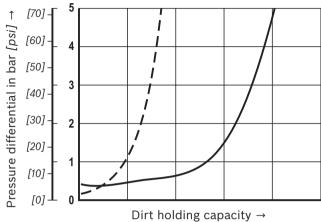

Achievable filtration ratio $\beta_{x(c)}$ (β value)

Typical β values of up to 2.2 bar [31.9 psi] Δp pressure increase at the filter element ¹⁾

Filter medium	Particle size "x" for various β values, measurement according to ISO 16889					
mealum	$\beta_{x(c)} \ge 75$ $\beta_{x(c)} \ge 200$ $\beta_{x(c)} \ge 1000$					
H1XL	< 4.0 µm(c)	< 4.0 µm(c)	< 4.0 µm(c)			
H3XL	4.0 μm(c)	< 4.5 µm(c)	5.0 µm(c)			
H6XL	4.8 µm(c)	5.5 µm(c)	7.5 µm(c)			
H10XL	6.5 µm(c)	7.5 µm(c)	9.5 µm(c)			
H20XL	18.5 µm(c)	20.0 μm(c)	22.0 µm(c)			

¹⁾ Filtration ratio $\beta_{x(c)}$ for other filter media upon request

Filtration ratio $\beta_{x(c)}$ as a function of the particle size $\mu m(c)$



Technical data H...XL

Dirt holding capacity

Compared to conventional filter media with insertion technology, the filter material H...XL features a high dirt holding capacity because it is made of two separate filter layers connected in series.

Superior dirt holding capacity of H...XL filter elements

Conventional filter element (single-layer glass fiber material) **Rexroth H...XL filter element** (multi-layer glass fiber material)

Technical data H...PZ

Glass fiber material, H...PZ

The filter medium achieves the best possible degree of purity compared to other filter media. It is suitable for hydraulic oil. Due to its designed retention capacity (ISO 16889), it offers therefore highly effective protection for machine and system components which are sensitive to contamination.

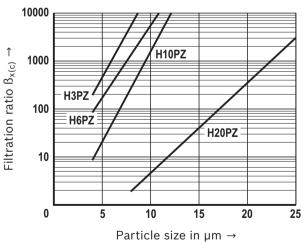
- Depth filter made of inorganic glass fiber material
- Absolute filtration/defined retention capacity according to ISO 16889
- Non-reusable filter (not cleanable due to the depth filtration effect)
- Attainable oil cleanliness classes according to ISO 4406 up to ISO code 12/8/3 and better

Filter rating and attainable oil cleanliness

The following table provides recommendations for the selection of a filter medium in dependency of the application and indicates the average oil cleanliness class attainable according to ISO 4406 or SAE-AS 4059.

glass fiber material

Contamination class	te	to be achieved with filter				
DIN ISO 4406	ß _{x(c)} = 200	Material	Possible arrangement		Hydraulic system	
13/10/8 - 17/13/10	3 μm				 - Vertical stacking	
15/12/10 - 19/14/11	6 μm	Glass fiber material HPZ	material Sandwich plate filter 320P7	Sandwich plate		(Sandwich plate mounting)
17/14/10 - 21/16/13	10 μm					
19/16/12 - 22/17/14	20 μm					


Achievable filtration ratio $\beta_{x(c)}$ (β value)

Typical β values of up to 2.2 bar [31.9 psi] Δp pressure increase at the filter element ¹⁾

Filter medium	Particle size ' measuremen	,				
mealum	$\beta_{x(c)} \ge 75$ $\beta_{x(c)} \ge 200$ $\beta_{x(c)} \ge 1000$					
H3PZ	4.0 μm(c)	< 4.5 µm(c)	5.0 µm(c)			
H6PZ	4.8 μm(c)	5.5 µm(c)	7.5 µm(c)			
H10PZ	6.5 µm(c)	7.5 µm(c)	9.5 μm(c)			
H20PZ	18.5 μm(c)	20.0 μm(c)	22.0 µm(c)			

 $^{^{1)} \}quad \mbox{Filtration ratio } \beta_{x(c)} \mbox{ for other filter media upon request}$

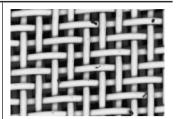
Filtration ratio $\beta_{x(c)}$ as a function of the particle size $\mu m(c)$

Technical data G...

Stainless steel wire mesh, G...

There is a comprehensive field of applications for wire mesh filter media. Not only pre-filtration is possible, but also the filtration of lubricating oils, hydraulic oils, coolants and water-like fluids.

Wire mesh G10 ... G40


As surface filters, these materials are generally cleanable. Due to their fine mesh, however, cleaning is more difficult than with coarser filter mesh.

Therefore, we recommend cleaning the filters in an ultrasonic bath.

Wire mesh G60 ... G800

Due to their coarser mesh size, the cleaning of these filters media is easier.

- Surface filter made of stainless steel wire mesh
- Reusable, cleanable
- Pleated version: single, two or three-layer design

Filter medium	Version	Mesh size
G10	Special Dutch weave	10 μm nom.
G25	Dady mach	25 μm nom.
G40	Body mesh	40 μm nom.
G60 G800	Plain woven cloth	60 800 μm nom.

Stainless steel wire mesh

	to be achieved with filter			Г	
Contamination class DIN ISO 4406	nominal	Material	Possible arrange- ment		Fluid system
20/18/13 - 21/20/15	10 μm		Pressure filter	П	For production facilities (hydraulic)
Not applicable for wire mesh > 10 μm	25 800 μm	Stainless steel wire mesh, G	Return flow pressure filters or suction filters		and as a protection filter (G10, G25) All fluids e.g.: - Lubricant - Petrochemical - Water filter - Refrigeration/Thermo oil

Technical data G...

Cleaning of filter elements

Cleaning or replacement

Before cleaning a G...- element, the filter element has to be dismantled first and then checked whether it makes sense to clean the element. For example, if the cloth contains many fibrous substances and consists of a material finer than G40, effective and complete cleaning is not possible in many cases. Filter mesh which has visible defects due to frequent cleaning must be replaced. In general, the following applies: The finer the cloth, the thinner the wire. Therefore, especially fine mesh must be cleaned gently to protect the material. Cracks in the folds of the wire mesh and the metal fiber fleece are to be avoided. Otherwise, the filter capacity will be insufficient.

Cleaning frequency

Experience has shown that filter elements made of G10, G25 and G40 can be cleaned up to ten times.

Filter mesh > 60 μ m can usually be cleaned more than ten times. Reusability, however, very much depends on the type of contamination as well as on pressurization (final Δp before dismantling the filter element). For maximum reusability, we therefore recommend replacing in particular the fine mesh and the M material at a final Δp of 2.2 bar [31.9 psi] at the latest. Due to the given reasons, the aforementioned values must be regarded as reference values for which we do not assume any liability.

Recommendations for cleaning

Manual and simple cleaning method for G... elements

Procedure	Wire mesh G10, G25, G40	Wire mesh G60 G800				
Chemical pre-cleaning	Let the filter element drain for approx. 1 hour after disassembly. Bathe in solvent afterwards.					
Mechanical pre-cleaning	8	Remove rough dirt with a brush or scrubber. Do not use any hard or pointed objects which could damage the filter medium.				
Mechanical/chemical main cleaning	Put pre-cleaned element in an ultrasonic bath with special solvent. Clean the element in the ultrasonic bath until any visible contamination is removed.	Steam with hot wash solution (Water with corrosion protection agent)				
test	Visually inspect the material for damage. Replace the filter element if you identify obvious damages.					
Preservation	After drying, you must spray the cleaned element with preservative agents and store it sealed against dust in a plastic foil.					

Automated cleaning for G... elements


Procedure	Wire mesh G10, G25, G40, G60 G800
Chemical pre-cleaning	Let the filter element drain for approx. 1 hour after disassembly. Bathe in solvent afterwards.
Mechanical/chemical main cleaning	By means of special cleaning systems for filter elements. Most of these systems are provided with a fully automated and combined cleaning mechanism including ultrasound as well as mechanical and chemical cleaning processes. This allows for best possible cleaning results with gentle cleaning processes.

Technical data M...

Metal fiber fleece, M...

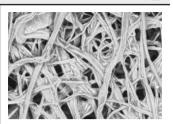
Metal fiber fleece is used to achieve high purity levels for special fluids or high operating temperatures. It provides effective protection for dirt-sensitive machine parts through absolute filtration. Since this material is made from stable and tightly bound interwoven stainless steel fibres, it counts as a depth filter media and is classified as not cleanable.

- Absolute filtration, measurement according to ISO 16889
- Depth filter made of stainless steel fibers
- non-reusable filter
- Oil cleanliness classes according to ISO 4406 up to an ISO cleanliness class from 15/13/10 and better
- Pleated version: two or three-layer design
- Supporting mesh: Epoxy or stainless steel wire mesh

Filter medium	Particle size for filtration ratio > 75 1)
M5	5 μm
M10	10 μm

¹⁾ according to ISO 16889

Metal fiber fleece


Contamination class	to be achieved with filter			
DIN ISO 4406	β _{x(c)} = 75	Material	Possible arrangement	Hydraulic system
16/13/10 - 20/15/11	5 μm	Metal fiber fleece	Return flow	Filter material for special applications
18/14/10 - 21/17/13	10 µm	M	or pressure filters.	(non-hydraulic)

Technical data P...

Filter paper, P...

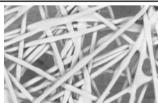
Filter paper is used for the filtration of lubricating oil and for pre-filtration. Filter paper has the following features:

- Depth filter made of cellulose fibers
- Specially impregnated against swelling caused by humidity
- Pleated version: single, two or three-layer design
- Non-reusable filter (not cleanable due to the depth filtration effect)

Filter medium	Nominal filter rating	Filtration ratio β values 1)	Retention rate 1)
P10	10 μm	β _{10(c)} > 2.0	50 %
P25	25 μm	β _{10(c)} > 1.25	20 %

¹⁾ according to ISO 16889

Filter paper

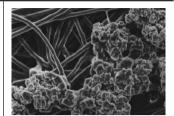

Contamination class	to be achieved with filter			
DIN ISO 4406	ß _{x(c)} = 200	Material	Possible arrangement	Hydraulic system
20/19/14 - 22/20/15	10 μm		Return flow	
21/20/15 - 22/21/16	25 μm	Paper P	or pressure filters.	For production facilities

Technical data VS..

Fleece material, VS...

The fleece material VS... serves for filtration of coolants, water and aqueous media. It is also possible to use this filter media for the filtration of emulsions or generally for pre-filtration.

- Depth filter material made of polyolefin fibers
- Binder-free
- Thermofixed
- Extremely tear-resistant
- Pleated version: single or two-layer design
- Supporting mesh: epoxy-coated or stainless steel wire mesh
- Non-reusable filter (not cleanable due to the depth filtration effect)



Filter medium	Nominal filter rating			
VS 25	25 μm			
VS 40	40 μm			
VS 60	60 μm			
	00 p			

Technical data AS...

Water absorbing, AS...

AS ... Aquasorb Filter elements adsorb humidity from ventilation filters as well as free water in hydraulic fluids and lubricating oils. Even at low concentration above the saturation point of the oil water can accelerate oil aging through oxidation. This results in increased corrosion and increased wear and tear. In certain oil additives it can also cause a change or a failure in the form of solid, mucus-like substances which then prematurely clog the pores of the filter With a combination of glass fiber filter media a highly effective separation of dirt is additionally given

- Absolute filtration ISO 16889
- Surface filter made of water absorbent filter fleece
- Combined with glass fiber
- Non-reusable filter (not cleanable due to the depth filtration effect)
- Pleated version: multi layer design

Filter medium	Particle size $\beta_{x(c)}$ = 200 1)	Particle size β _{x(c)} = 1000 ¹⁾	
AS3	4.5 μm(c)	5.0 μm(c)	
AS6	5.5 μm(c)	7.5 µm(c)	
AS10	7.5 µm(c)	9.5 μm(c)	
AS20	20 μm(c)	22 μm(c)	

¹⁾ according to ISO 16889

Aquasorb

Contamination class	to	to be achieved with filter				
DIN ISO 4406	ß _{x(c)} = 200	Material	Possible arrangement	Hydraulic system		Hydraulic system
13/10/8 - 17/13/10	3 μm	AS	Return flow, bypass or ventilation filters.			Servo valves
15/12/10 - 19/14/11	6 μm					High-response valves
17/14/10 - 21/16/13	10 μm					Proportional valves
19/16/12 - 22/17/14	20 µm				-	General pumps and valves

Functional principle

Rexroth Aquasorb filter elements are pleated just as Rexroth industrial filter elements, however, contain a layer of fleece material on a water-binding fabric is in the form of a fine granulate. The corresponding glass fiber is combined behind this fleece material, depending on the filter rating.

Effectiveness

The effectiveness of the Rexroth Aquasorb elements has been proven through internal testing and by a scientific study in an independent institute. The water content (free water) can be reduced to the saturation point of the oil. The effectiveness and the water absorption are dependent on the load on filter area, the viscosity of the oil and the oil temperature. The values of water absorption and the change at higher viscosities are specified below.

Technical data	AS
rechnical data	A5

Туре	Calculated water absorption				
	at 15 cst in ml	at 30 cst in ml	at 46 cst in ml	at 120 cst in ml	
1.0040	60	40	35	20	
1.0063	100	70	55	35	
1.0100	160	110	90	60	
1.0130	225	155	130	85	
1.0150	360	250	210	135	
1.0160	265	185	155	100	
1.0250	435	305	255	165	
1.0400	785	550	455	300	
1.0630	1290	900	750	490	
1.1000	1435	1005	830	545	
1.2000	2785	1950	1615	1055	
1.2500	3650	2555	2115	1385	

Туре	Calculated water absorption				
	at 15 cst in ml	at 30 cst in ml	at 46 cst in ml	at 120 cst in ml	
2.0040	35	25	20	15	
2.0063	55	40	30	20	
2.0100	90	65	50	35	
2.0130	110	75	65	40	
2.0150	145	105	85	55	
2.0160	200	140	115	75	
2.0250	325	225	190	125	
2.0400	525	370	305	200	
2.0630	715	500	415	270	
2.1000	835	585	485	315	
2.0058	1545	1080	895	585	
2.0059	1790	1250	1035	680	

Assembly, commissioning, maintenance

When has the filter element to be replaced or cleaned?

As soon as the dynamic pressure or the pressure differential set at the maintenance indicator is reached, the red push button of the optical-mechanical maintenance indicator pops out. In addition an electrical signal is given if an electronic switching element is present. In this case, the filter element must be replaced or cleaned. Filter elements should be replaced or cleaned after max. 6 months.

Filter element exchange

- For single filters: Switch off the system and discharge the filter on the pressure side.
- ► For installed duplex switch filters: Refer to the relevant maintenance instructions according to the data sheet.

Detailed instructions with regard to the exchange of filter elements can be found on the data sheet of the relevant filter series.

▲ WARNING!

► Filters are containers under pressure. Before opening the filter housing, check whether the system pressure in the filter has been decreased to ambient pressure. Only then may the filter housing be opened for maintenance.

Notice:

► From a cold start the preset optical maintenance indicator signal may be exceeded due to the high viscosity.

After reaching the operating temperature the mechanical optical display can be acknowledged manually. The electrical signal will go out after the operating temperature has been reached.

If the maintenance indicator signal is ignored,

- the disproportionately increasing pressure differential may damage the filter element causing it to collapse.
- ► Warranty becomes void if the delivered item is changed by the ordering party or third parties or improperly mounted, installed, maintained, repaired, used or exposed to environmental condition that do not comply with the installation conditions.

Directives and standards

Rexroth filter elements are tested and quality-monitored according to different ISO test standards:

ISO 16889:2008-06		
ISO 3968:2001-12		
ISO 2943:1998-11		
ISO 2941:2009-04		
_		

The development, manufacture and assembly of Rexroth industrial filters and Rexroth filter elements is carried out within the framework of a certified quality management system in accordance with ISO 9001:2000.

Bosch Rexroth AG Werk Ketsch Hardtwaldstr. 43 68775 Ketsch, Germany Telefon +49 (0) 62 02/603-0 filter-support@boschrexroth.de www.boschrexroth.de © Alle Rechte bei Bosch Rexroth AG, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns. Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.